3.344 \(\int \frac {\tan ^{-1}(a x)^2}{x^2 (c+a^2 c x^2)^{3/2}} \, dx\)

Optimal. Leaf size=293 \[ -\frac {\sqrt {a^2 c x^2+c} \tan ^{-1}(a x)^2}{c^2 x}+\frac {2 i a \sqrt {a^2 x^2+1} \text {Li}_2\left (-\frac {\sqrt {i a x+1}}{\sqrt {1-i a x}}\right )}{c \sqrt {a^2 c x^2+c}}-\frac {2 i a \sqrt {a^2 x^2+1} \text {Li}_2\left (\frac {\sqrt {i a x+1}}{\sqrt {1-i a x}}\right )}{c \sqrt {a^2 c x^2+c}}+\frac {2 a^2 x}{c \sqrt {a^2 c x^2+c}}-\frac {a^2 x \tan ^{-1}(a x)^2}{c \sqrt {a^2 c x^2+c}}-\frac {2 a \tan ^{-1}(a x)}{c \sqrt {a^2 c x^2+c}}-\frac {4 a \sqrt {a^2 x^2+1} \tan ^{-1}(a x) \tanh ^{-1}\left (\frac {\sqrt {1+i a x}}{\sqrt {1-i a x}}\right )}{c \sqrt {a^2 c x^2+c}} \]

[Out]

2*a^2*x/c/(a^2*c*x^2+c)^(1/2)-2*a*arctan(a*x)/c/(a^2*c*x^2+c)^(1/2)-a^2*x*arctan(a*x)^2/c/(a^2*c*x^2+c)^(1/2)-
4*a*arctan(a*x)*arctanh((1+I*a*x)^(1/2)/(1-I*a*x)^(1/2))*(a^2*x^2+1)^(1/2)/c/(a^2*c*x^2+c)^(1/2)+2*I*a*polylog
(2,-(1+I*a*x)^(1/2)/(1-I*a*x)^(1/2))*(a^2*x^2+1)^(1/2)/c/(a^2*c*x^2+c)^(1/2)-2*I*a*polylog(2,(1+I*a*x)^(1/2)/(
1-I*a*x)^(1/2))*(a^2*x^2+1)^(1/2)/c/(a^2*c*x^2+c)^(1/2)-arctan(a*x)^2*(a^2*c*x^2+c)^(1/2)/c^2/x

________________________________________________________________________________________

Rubi [A]  time = 0.43, antiderivative size = 293, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {4966, 4944, 4958, 4954, 4898, 191} \[ \frac {2 i a \sqrt {a^2 x^2+1} \text {PolyLog}\left (2,-\frac {\sqrt {1+i a x}}{\sqrt {1-i a x}}\right )}{c \sqrt {a^2 c x^2+c}}-\frac {2 i a \sqrt {a^2 x^2+1} \text {PolyLog}\left (2,\frac {\sqrt {1+i a x}}{\sqrt {1-i a x}}\right )}{c \sqrt {a^2 c x^2+c}}-\frac {\sqrt {a^2 c x^2+c} \tan ^{-1}(a x)^2}{c^2 x}+\frac {2 a^2 x}{c \sqrt {a^2 c x^2+c}}-\frac {a^2 x \tan ^{-1}(a x)^2}{c \sqrt {a^2 c x^2+c}}-\frac {2 a \tan ^{-1}(a x)}{c \sqrt {a^2 c x^2+c}}-\frac {4 a \sqrt {a^2 x^2+1} \tan ^{-1}(a x) \tanh ^{-1}\left (\frac {\sqrt {1+i a x}}{\sqrt {1-i a x}}\right )}{c \sqrt {a^2 c x^2+c}} \]

Antiderivative was successfully verified.

[In]

Int[ArcTan[a*x]^2/(x^2*(c + a^2*c*x^2)^(3/2)),x]

[Out]

(2*a^2*x)/(c*Sqrt[c + a^2*c*x^2]) - (2*a*ArcTan[a*x])/(c*Sqrt[c + a^2*c*x^2]) - (a^2*x*ArcTan[a*x]^2)/(c*Sqrt[
c + a^2*c*x^2]) - (Sqrt[c + a^2*c*x^2]*ArcTan[a*x]^2)/(c^2*x) - (4*a*Sqrt[1 + a^2*x^2]*ArcTan[a*x]*ArcTanh[Sqr
t[1 + I*a*x]/Sqrt[1 - I*a*x]])/(c*Sqrt[c + a^2*c*x^2]) + ((2*I)*a*Sqrt[1 + a^2*x^2]*PolyLog[2, -(Sqrt[1 + I*a*
x]/Sqrt[1 - I*a*x])])/(c*Sqrt[c + a^2*c*x^2]) - ((2*I)*a*Sqrt[1 + a^2*x^2]*PolyLog[2, Sqrt[1 + I*a*x]/Sqrt[1 -
 I*a*x]])/(c*Sqrt[c + a^2*c*x^2])

Rule 191

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(x*(a + b*x^n)^(p + 1))/a, x] /; FreeQ[{a, b, n, p}, x] &
& EqQ[1/n + p + 1, 0]

Rule 4898

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_)/((d_) + (e_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(b*p*(a + b*ArcTan[
c*x])^(p - 1))/(c*d*Sqrt[d + e*x^2]), x] + (-Dist[b^2*p*(p - 1), Int[(a + b*ArcTan[c*x])^(p - 2)/(d + e*x^2)^(
3/2), x], x] + Simp[(x*(a + b*ArcTan[c*x])^p)/(d*Sqrt[d + e*x^2]), x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[e,
c^2*d] && GtQ[p, 1]

Rule 4944

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Simp
[((f*x)^(m + 1)*(d + e*x^2)^(q + 1)*(a + b*ArcTan[c*x])^p)/(d*f*(m + 1)), x] - Dist[(b*c*p)/(f*(m + 1)), Int[(
f*x)^(m + 1)*(d + e*x^2)^q*(a + b*ArcTan[c*x])^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, f, m, q}, x] && EqQ[e,
 c^2*d] && EqQ[m + 2*q + 3, 0] && GtQ[p, 0] && NeQ[m, -1]

Rule 4954

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))/((x_)*Sqrt[(d_) + (e_.)*(x_)^2]), x_Symbol] :> Simp[(-2*(a + b*ArcTan[c
*x])*ArcTanh[Sqrt[1 + I*c*x]/Sqrt[1 - I*c*x]])/Sqrt[d], x] + (Simp[(I*b*PolyLog[2, -(Sqrt[1 + I*c*x]/Sqrt[1 -
I*c*x])])/Sqrt[d], x] - Simp[(I*b*PolyLog[2, Sqrt[1 + I*c*x]/Sqrt[1 - I*c*x]])/Sqrt[d], x]) /; FreeQ[{a, b, c,
 d, e}, x] && EqQ[e, c^2*d] && GtQ[d, 0]

Rule 4958

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)/((x_)*Sqrt[(d_) + (e_.)*(x_)^2]), x_Symbol] :> Dist[Sqrt[1 + c^2*
x^2]/Sqrt[d + e*x^2], Int[(a + b*ArcTan[c*x])^p/(x*Sqrt[1 + c^2*x^2]), x], x] /; FreeQ[{a, b, c, d, e}, x] &&
EqQ[e, c^2*d] && IGtQ[p, 0] &&  !GtQ[d, 0]

Rule 4966

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*(x_)^(m_)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Dist[1/d, Int[
x^m*(d + e*x^2)^(q + 1)*(a + b*ArcTan[c*x])^p, x], x] - Dist[e/d, Int[x^(m + 2)*(d + e*x^2)^q*(a + b*ArcTan[c*
x])^p, x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && IntegersQ[p, 2*q] && LtQ[q, -1] && ILtQ[m, 0] &
& NeQ[p, -1]

Rubi steps

\begin {align*} \int \frac {\tan ^{-1}(a x)^2}{x^2 \left (c+a^2 c x^2\right )^{3/2}} \, dx &=-\left (a^2 \int \frac {\tan ^{-1}(a x)^2}{\left (c+a^2 c x^2\right )^{3/2}} \, dx\right )+\frac {\int \frac {\tan ^{-1}(a x)^2}{x^2 \sqrt {c+a^2 c x^2}} \, dx}{c}\\ &=-\frac {2 a \tan ^{-1}(a x)}{c \sqrt {c+a^2 c x^2}}-\frac {a^2 x \tan ^{-1}(a x)^2}{c \sqrt {c+a^2 c x^2}}-\frac {\sqrt {c+a^2 c x^2} \tan ^{-1}(a x)^2}{c^2 x}+\left (2 a^2\right ) \int \frac {1}{\left (c+a^2 c x^2\right )^{3/2}} \, dx+\frac {(2 a) \int \frac {\tan ^{-1}(a x)}{x \sqrt {c+a^2 c x^2}} \, dx}{c}\\ &=\frac {2 a^2 x}{c \sqrt {c+a^2 c x^2}}-\frac {2 a \tan ^{-1}(a x)}{c \sqrt {c+a^2 c x^2}}-\frac {a^2 x \tan ^{-1}(a x)^2}{c \sqrt {c+a^2 c x^2}}-\frac {\sqrt {c+a^2 c x^2} \tan ^{-1}(a x)^2}{c^2 x}+\frac {\left (2 a \sqrt {1+a^2 x^2}\right ) \int \frac {\tan ^{-1}(a x)}{x \sqrt {1+a^2 x^2}} \, dx}{c \sqrt {c+a^2 c x^2}}\\ &=\frac {2 a^2 x}{c \sqrt {c+a^2 c x^2}}-\frac {2 a \tan ^{-1}(a x)}{c \sqrt {c+a^2 c x^2}}-\frac {a^2 x \tan ^{-1}(a x)^2}{c \sqrt {c+a^2 c x^2}}-\frac {\sqrt {c+a^2 c x^2} \tan ^{-1}(a x)^2}{c^2 x}-\frac {4 a \sqrt {1+a^2 x^2} \tan ^{-1}(a x) \tanh ^{-1}\left (\frac {\sqrt {1+i a x}}{\sqrt {1-i a x}}\right )}{c \sqrt {c+a^2 c x^2}}+\frac {2 i a \sqrt {1+a^2 x^2} \text {Li}_2\left (-\frac {\sqrt {1+i a x}}{\sqrt {1-i a x}}\right )}{c \sqrt {c+a^2 c x^2}}-\frac {2 i a \sqrt {1+a^2 x^2} \text {Li}_2\left (\frac {\sqrt {1+i a x}}{\sqrt {1-i a x}}\right )}{c \sqrt {c+a^2 c x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.12, size = 226, normalized size = 0.77 \[ \frac {a \left (4 i \sqrt {a^2 x^2+1} \text {Li}_2\left (-e^{i \tan ^{-1}(a x)}\right )-4 i \sqrt {a^2 x^2+1} \text {Li}_2\left (e^{i \tan ^{-1}(a x)}\right )+4 \sqrt {a^2 x^2+1} \tan ^{-1}(a x) \log \left (1-e^{i \tan ^{-1}(a x)}\right )-4 \sqrt {a^2 x^2+1} \tan ^{-1}(a x) \log \left (1+e^{i \tan ^{-1}(a x)}\right )-\frac {2 \left (a^2 x^2+1\right ) \tan ^{-1}(a x)^2 \sin ^2\left (\frac {1}{2} \tan ^{-1}(a x)\right )}{a x}+4 a x-2 a x \tan ^{-1}(a x)^2-4 \tan ^{-1}(a x)-\frac {1}{2} a x \tan ^{-1}(a x)^2 \csc ^2\left (\frac {1}{2} \tan ^{-1}(a x)\right )\right )}{2 c \sqrt {a^2 c x^2+c}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[ArcTan[a*x]^2/(x^2*(c + a^2*c*x^2)^(3/2)),x]

[Out]

(a*(4*a*x - 4*ArcTan[a*x] - 2*a*x*ArcTan[a*x]^2 - (a*x*ArcTan[a*x]^2*Csc[ArcTan[a*x]/2]^2)/2 + 4*Sqrt[1 + a^2*
x^2]*ArcTan[a*x]*Log[1 - E^(I*ArcTan[a*x])] - 4*Sqrt[1 + a^2*x^2]*ArcTan[a*x]*Log[1 + E^(I*ArcTan[a*x])] + (4*
I)*Sqrt[1 + a^2*x^2]*PolyLog[2, -E^(I*ArcTan[a*x])] - (4*I)*Sqrt[1 + a^2*x^2]*PolyLog[2, E^(I*ArcTan[a*x])] -
(2*(1 + a^2*x^2)*ArcTan[a*x]^2*Sin[ArcTan[a*x]/2]^2)/(a*x)))/(2*c*Sqrt[c + a^2*c*x^2])

________________________________________________________________________________________

fricas [F]  time = 0.70, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {a^{2} c x^{2} + c} \arctan \left (a x\right )^{2}}{a^{4} c^{2} x^{6} + 2 \, a^{2} c^{2} x^{4} + c^{2} x^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctan(a*x)^2/x^2/(a^2*c*x^2+c)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(a^2*c*x^2 + c)*arctan(a*x)^2/(a^4*c^2*x^6 + 2*a^2*c^2*x^4 + c^2*x^2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \mathit {sage}_{0} x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctan(a*x)^2/x^2/(a^2*c*x^2+c)^(3/2),x, algorithm="giac")

[Out]

sage0*x

________________________________________________________________________________________

maple [A]  time = 0.76, size = 279, normalized size = 0.95 \[ -\frac {a \left (\arctan \left (a x \right )^{2}-2+2 i \arctan \left (a x \right )\right ) \left (a x -i\right ) \sqrt {c \left (a x -i\right ) \left (a x +i\right )}}{2 \left (a^{2} x^{2}+1\right ) c^{2}}-\frac {\sqrt {c \left (a x -i\right ) \left (a x +i\right )}\, \left (a x +i\right ) \left (\arctan \left (a x \right )^{2}-2-2 i \arctan \left (a x \right )\right ) a}{2 \left (a^{2} x^{2}+1\right ) c^{2}}-\frac {\arctan \left (a x \right )^{2} \sqrt {c \left (a x -i\right ) \left (a x +i\right )}}{x \,c^{2}}-\frac {2 i a \left (-i \arctan \left (a x \right ) \ln \left (1+\frac {i a x +1}{\sqrt {a^{2} x^{2}+1}}\right )+i \ln \left (1-\frac {i a x +1}{\sqrt {a^{2} x^{2}+1}}\right ) \arctan \left (a x \right )+\polylog \left (2, \frac {i a x +1}{\sqrt {a^{2} x^{2}+1}}\right )-\polylog \left (2, -\frac {i a x +1}{\sqrt {a^{2} x^{2}+1}}\right )\right ) \sqrt {c \left (a x -i\right ) \left (a x +i\right )}}{\sqrt {a^{2} x^{2}+1}\, c^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(arctan(a*x)^2/x^2/(a^2*c*x^2+c)^(3/2),x)

[Out]

-1/2*a*(arctan(a*x)^2-2+2*I*arctan(a*x))*(a*x-I)*(c*(a*x-I)*(I+a*x))^(1/2)/(a^2*x^2+1)/c^2-1/2*(c*(a*x-I)*(I+a
*x))^(1/2)*(I+a*x)*(arctan(a*x)^2-2-2*I*arctan(a*x))*a/(a^2*x^2+1)/c^2-arctan(a*x)^2*(c*(a*x-I)*(I+a*x))^(1/2)
/x/c^2-2*I*a*(-I*ln(1+(1+I*a*x)/(a^2*x^2+1)^(1/2))*arctan(a*x)+I*ln(1-(1+I*a*x)/(a^2*x^2+1)^(1/2))*arctan(a*x)
+polylog(2,(1+I*a*x)/(a^2*x^2+1)^(1/2))-polylog(2,-(1+I*a*x)/(a^2*x^2+1)^(1/2)))/(a^2*x^2+1)^(1/2)*(c*(a*x-I)*
(I+a*x))^(1/2)/c^2

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\arctan \left (a x\right )^{2}}{{\left (a^{2} c x^{2} + c\right )}^{\frac {3}{2}} x^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctan(a*x)^2/x^2/(a^2*c*x^2+c)^(3/2),x, algorithm="maxima")

[Out]

integrate(arctan(a*x)^2/((a^2*c*x^2 + c)^(3/2)*x^2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\mathrm {atan}\left (a\,x\right )}^2}{x^2\,{\left (c\,a^2\,x^2+c\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(atan(a*x)^2/(x^2*(c + a^2*c*x^2)^(3/2)),x)

[Out]

int(atan(a*x)^2/(x^2*(c + a^2*c*x^2)^(3/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\operatorname {atan}^{2}{\left (a x \right )}}{x^{2} \left (c \left (a^{2} x^{2} + 1\right )\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(atan(a*x)**2/x**2/(a**2*c*x**2+c)**(3/2),x)

[Out]

Integral(atan(a*x)**2/(x**2*(c*(a**2*x**2 + 1))**(3/2)), x)

________________________________________________________________________________________